
UNIX streams, pipes, scripts

Jon Chernus (adapted from Ryan Minster)

Department of Human Genetics
School of Public Health
University of Pittsburgh

Document created: September 23, 2024

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 1 / 27

Location

This slide set is called unix_streams_pipes_scripts and is
located in the “16_unix_streams_pipes_scripts” folder of our
Lectures repository.

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 2 / 27

Objectives

To learn how streams operate in Unix
To learn out to pass streamed data from program to program
in Unix
To learn how to write a script that can run in Unix
To learn about the cluster and how to submit jobs there

Most of the content in this slide set is essential. You will need to
become proficient with it to proceed in the course and to work at
the command line in general.

Much of this is a review of what you read in the assigned Active
Reading.

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 3 / 27

Reminder: warnings

rm and rmdir are forever
overwriting is forever (so be careful with cp, mv, etc.)
a single whitespace matters a lot

rm -rf a*
recursively delete any file/folder starting with an a

rm -rf a *
recursively delete any file/folder starting with an a
then do the same for everything (because * matches anything)

these are all different, so be careful when copy-pasting
“,”, and ” (straight vs. curly double-quotes)
‘,’,’, and ‘ (straight vs. curly single-quotes vs. back-tick)
-, –, and — (hyphen, en dash, em dash)

don’t use spaces and special characters in file names
don’t work on the login node of htc (use srun -M teach -A
hugen2071-2024f --pty bash)

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 4 / 27

Reminder: logging on to htc

First, log into the VPN with GlobalProtect.

There are two ways to log on to the cluster

Via the web: ondemand.htc.crc.pitt.edu
Via a terminal window

ssh <your_user_name>@htc.crc.pitt.edu

For details, see
https://crc.pitt.edu/getting-started/accessing-cluster.

Next, always start an interactive job: srun -M teach -A
hugen2071-2024f --pty bash .

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 5 / 27

ondemand.htc.crc.pitt.edu
https://crc.pitt.edu/getting-started/accessing-cluster

Note

The reading for today covered a few topics that we will address in
a later lecture:

Loops
sort and uniq

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 6 / 27

Streams
Many (not all) of the most useful UNIX commands operate on
streams, which you can think of as text data flowing from a source.

Streams avoid loading an entire dataset into memory
Standard in: the stream “into” a program
Standard out: the stream “out of” a program (to the screen
by default)
Standard error: the stream of error messages/warnings from a
program (to the screen by default)

Figure 1: Standard out and standard error print to the screen

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 7 / 27

Redirection

Figure 2: Redirection (of just standard out, to a file)

Printing everything to the screen is not so useful, so we use
redirection to make standard out and standard error “go”
elsewhere
You have to give them destinations

to a file (which you can either append or overwrite)
to /dev/null (you can make unwanted output disappear here)
they can go to the same or different places

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 8 / 27

Redirection syntax

Operator Meaning Example What it does

> or >> Redirect standard out command >>
results.txt

Append just stdout to
results.txt

2> or 2>> Redirect standard error command >
results.txt 2>>
log.txt

Redirect stdout to
results.txt and append
stderr to log.txt

&> or &>> Redirect both (to the
same file)

command &>
results.txt

Redirect stdout and std
err to results.txt

2>&1 Combine stderr into
stdout

command 2>&1 *Looks* the same as
doing command, but stdout
and stderr are now in one
stream

Using > overwrites the destination file
Using >> appends to the destination file

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 9 / 27

Redirection examples
cd data

The initial files
ls
chr1.txt
chr2.txt

echo "This is my log file" > log.txt

cat chr1.txt chr2.txt chr3.txt > markers.txt 2>> log.txt # Try "merging" together 3 files

Notice there two more files now
ls
chr1.txt
chr2.txt
log.txt
markers.txt

#Look at markers.txt and log.txt
cat markers.txt # Look at output
chr1:36926582
chr1:66782904
chr1:77840389
chr2:60318540
chr2:85739014

cat log.txt # Look at error log
This is my log file
cat: chr3.txt: No such file or directory

rm markers.txt log.txt # Clear existing output

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 10 / 27

Redirecting standard in
Sometimes it’s convenient to redirect stdin to combine streams.
Suppose we want to filter this file and retain the header
cat data2/locations.txt
chr bp
1 36926582
1 66782904
1 77840389
2 60318540
2 85739014

This will keep only lines starting with 1 but removes the header
grep "^1" data2/locations.txt
1 36926582
1 66782904
1 77840389

Use < to combine streams and keep the header
cat <(head -n1 data2/locations.txt) <(grep "^1" data2/locations.txt)
head -n1 data2/locations.txt
grep "^1" data2/locations.txt
chr bp
1 36926582
1 66782904
1 77840389

Note:

the order of the commands
the parentheses
the lack of spaces in <(

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 11 / 27

Pipes

What if you want to send output from one program to another
program instead of to a file?

Piping is like redirection, but to programs instead of files
stdout of one program becomes stdin of another, and so on
the syntax looks like:

command | program1 | program2 | program3.

(think of it as analogous to %>% in tidyverse)

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 12 / 27

Piping example 1

Peek at the first few lines
head -n3 data3/tb1.fasta
>gi|385663969|gb|JQ900508.1| Zea mays subsp. mexicana isolate IS9 teosinte branched 1 (tb1) gene, complete cds
GCCAGGACCTAGAGAGGGGAGCGTGGAGAGGGCATCAGGGGGCCTTGGAGTCCCATCAGTAAAGCACATG
TTTCCTTTCTGTGATTCCTCAAGCCCCATGGACTTACCGCTTTACCAACAACTGCAGCTAAGCCCGTCTT

First get non-header lines; then find lines containing non-ACGT letters (regardless of case)
grep -v "^>" data3/tb1.fasta | grep --color -i "[^ACGT]"
CCCCAAAGACGGACCAATCCAGCAGCTTCTACTGCTAYCCATGCTCCCCTCCCTTCGCCGCCGCCGACGC

Suppose we want to extract lines 10-15
Use tail to start at line 10, and use head to get the correct number of lines in total
tail -n+10 data3/tb1.fasta | head -n6
ACACGTCCAAGTCCGCCATCCAGGAGATCATGGCCGACGACGCGTCTTCGGAGTGCGTGGAGGACGGCTC
CAGCAGCCTCTCCGTCGACGGCAAGCACAACCCGGCAGAGCAGCTGGGAGGAGGAGGAGATCAGAAGCCC
AAGGGTAATTGCCGCGGCGAGGGGAAGAAGCCGGCCAAGGCAAGTAAGGCGGCGGCCACCCCGAAGCCGC
CAAGAAAATCGGCCAATAACGCACACCAGGTCCCCGACAAGGAGACGAGGGCGAAAGCGAGGGAGAGGGC
GAGGGAGCGGACCAAGGAGAAGCACCGGATGCGCTGGGTAAAGCTTGCTTCAGCAATTGACGTGGAGGCG
GCGGCTGCCTCGGGGCCGAGCGACAGGCCGAGCTCGAACAATTTGAGCCACCACTCATCGTTGTCCATGA

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 13 / 27

Piping example 2

Piping and redirection can be used together
Note how

\ is used as an escape character to continue the command on a new line
- means “whatever is coming through the pipe” (like . in tidyverse)

cd data4
toy.* exist; toy1.* do not exist
ls
toy.map
toy.ped

Notice how the following command continues over several lines!
cat toy.map toy1.map 2> toy.log | \
cat - toy.ped toy1.ped \
2>> toy.log > toy.out

cat toy.out
1 rs0 0 1000
1 rs10 0 1001
1 1000000000 0 0 1 1 0 0 1 1
1 1000000001 0 0 1 2 1 1 1 2
cat toy.log
cat: toy1.map: No such file or directory
cat: toy1.ped: No such file or directory
rm toy.out toy.log

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 14 / 27

tee - what if you want to pipe and redirect at the same
time?

| sends stdout to another program (invisibly), and > sends it to a
file (recording it)

So what if you want to redirect and pipe at the same time?
tee lets you do both: pipe output into another command
while also storing it into a file
Basic syntax: just type tee filename after a pipe:
Pseudo-example: command1 | tee file.txt | command2

Figure 3: Source:
https://www.2daygeek.com/linux-tee-command-examples/

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 15 / 27

https://www.2daygeek.com/linux-tee-command-examples/

Shell scripts

A script is a plaintext file usually with extension .sh

Structure
required header line (#!/bin/bash)
should include

set -e (quit running if there’s an error)
set -u (treat an un-set variable as an error)
set -o pipefail (prevents masking of errors in a pipeline;
more on that later)
set -x (optional; commands are echoed in the output)

then your commands/pipeline
execute with a command like bash script.sh or
./script.sh (may need to do chmod u+x script.sh first)

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 16 / 27

Shell script example

cat scripts/script1.sh
#!/bin/bash
set -euo pipefail

This line is a comment

echo "Hi there!"

This is the last line of the script and does nothing.

bash scripts/script1.sh
Hi there!

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 17 / 27

Variables and command-line arguments

A script is more useful if it can take arguments. You can supply
arguments to a bash script like this:

bash script.sh argument1 argument2 argument3

To use the arguments inside the script, call them by the variables
"$1", "$2" , "$3", and so on. (Quotes aren’t strictly necessary,
but are good in case there are spaces in the variable names.) "$@"
stores all of the command-line variables together.

Assign new variables with = and then use them with $.

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 18 / 27

Variables example

cat scripts/script2.sh
#!/bin/bash
set -euo pipefail

This script takes two arguments
argument 1 is a string to search for
argument 2 is a directory
The script counts how many files in the directory contain the given string in their names

List the contents, use grep to check for the string, print number of rows of output
ls "$2" | grep "$1" | wc -l

This is the last line of the script and does nothing.

bash scripts/script2.sh chr ./data/
2

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 19 / 27

Running a script with Slurm

Intensive scripts should be scheduled with a workload manager
- our cluster uses Slurm
To submit your script as a job to the cluster

Add #SBATCH options immediately below the header
(#!/bin/bash)
Run it with a command like sbatch script.sh
The job is assigned an ID

To load programs like R, PLINK, etc. you need to load them
as modules

enter a command like module spider r to learn how to load
the module you need

More info:
https://crc.pitt.edu/getting-started/running-jobs-slurm

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 20 / 27

https://crc.pitt.edu/getting-started/running-jobs-slurm

Slurm scripts in this course

All of your Slurm scripts should start like this:

#!/bin/bash
#SBATCH -M teach
#SBATCH -A hugen2071-2024f

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 21 / 27

Example Slurm script
Here’s a slurm script:

cat scripts/test.sh
#!/bin/bash
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --mail-user=jmc108@pitt.edu
#SBATCH -t 1:00:00

Have the script quit running if there’s an error
set -e; set -u; set -o pipefail

Print the start time to test.log, then a message, then wait 10 seconds, then the end time
Print a message (which will go to the slurm log file, since it was not redirected)
echo Job started at ‘date‘ > test.log
echo Hello World! >> test.log
echo "This comment is going to go into the slurm log file, not test.log"
sleep 10
echo Job stopped at ‘date‘ >> test.log

Here are the resulting message and files after running sbatch test.sh

cat scripts/test.log
Job started at Tue Oct 17 18:36:13 EDT 2023
Hello World!
Job stopped at Tue Oct 17 18:36:23 EDT 2023
cat scripts/slurm-2246985.out
This comment is going to go into the slurm log file, not test.log

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 22 / 27

Slurm options

Time limit (-t or -–time=<time>) – This must always be
specified

Formats:
-t 1 for one minute
-t 1:10 for one minute, ten seconds
-t 1:00:00 for one hour
-t 2-1:00:00 for two days, one hour
-t 1-1 for one day, one hour

Time limit on jobs on htc is 6-00:00:00

Job name (-J or –-job-name=<jobname>)
CPUs (-c or -–cpus-per-task=<ncpus>)

More info: https://crc.pitt.edu/getting-started/running-jobs-slurm

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 23 / 27

https://crc.pitt.edu/getting-started/running-jobs-slurm

Command-line arguments in Slurm scripts

Use the --export option with sbatch to pass command-line
arguments:

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 24 / 27

Managing Slurm jobs
Use squeue -u yourUserName to check on the status of
your jobs

ST is the state of the job (R = running, PD = pending, CA =
canceled, CD = completed, TO = timeout)
Time = how long the job has been running
Cancel a job with a command like scancel 123456 (use the
ID of the job you want to kill)
log file

every sbatch command makes a log file (named like
slurm-123456.out)
the number in the log file matches the slurm job’s ID
contains stdout and stderr for your script (unless you
redirected them)
created in the working directory from which you ran the script
LOOK AT THE LOG FILE!!!

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 25 / 27

A note about exit status

Recall that when a process ends, it returns an exit status stored in
the variable $?

Exit code 0 means no error
Any other exit code means error/failure for some reason
For a pipeline, the exit code is the last command’s exit code -
so errors can hide
set -e and set -o pipefail refer to nonzero exit codes (for a
single command and for a pipeline, respectively)
Sometimes a script might fail because of a rather “cryptic”
triggering of set -e or set -o, so be careful

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 26 / 27

Piping in scripts

Suppose the current step in your pipeline outputs a million
lines of text, so you pipe it to a command like head, which
stops streaming after a few lines
head sends a signal to the last command, telling it to stop
streaming the million lines (good!)
this can cause a non-zero exit status inside the pipeline
that will trigger set -o pipefail and make the script stop
running (bad)
to avoid this, try to re-order your commands
e.g., instead of tail -n+2 hugefile.txt | head -n1 do
head -n2 hugefile.txt | tail -n1

Jon Chernus (adapted from Ryan Minster) UNIX streams, pipes, scripts 27 / 27

